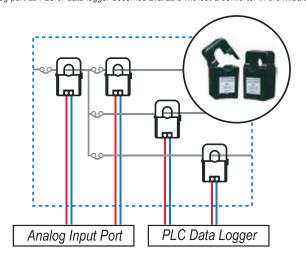
BB-JC1 0F50-V BB-JC2 4S250-V BB-JC36S500-V

Split-core Current Transducers/Sensors



Introduction

These split-core current transducers are designed for energy management with a convenient connection to electronic sub-metering. They may also be applied for current measurement in a system of distributed power line carriers (PLCs) or remote controls such as SCADA software for automation and supervision. Other applications include security and condition monitoring, load monitoring, protection systems, and predictive maintenance of conveyors, pumps. HVAC motors and more.

Load Trend Monitor per Distribution Panel

When a sensor outputting analog instrumentation signals in proportion to load current, is clamped directly onto the main or branch wiring of the distribution panel, direct input into analog port as PLC or data logger becomes available without a converter in the middle.

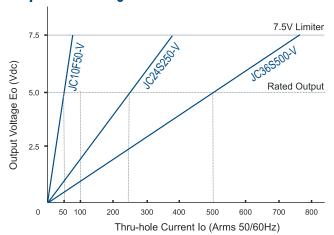
Features

- All-in one structure in a small size
- Connect directly to PLCs
- Sense motor stalls and short circuits
- Industrial instrumentation
- Process control loops
- Phased fired-controlled heaters
- UL, CSA, CE, RoHS-3 available

Ordering Information

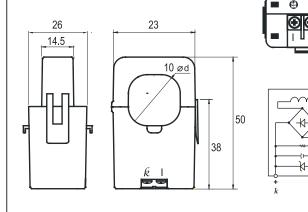
Model No.	Current Range (50/60 Hz)	Output Impedance	Weight
BB-JC10F50-V	50 Arms	6.2K Ω	45g
BB-JC24S250-V	250 Arms	5.8K Ω	200g
BB-JC36S500-V	500 Arms	5.8K Ω	200g

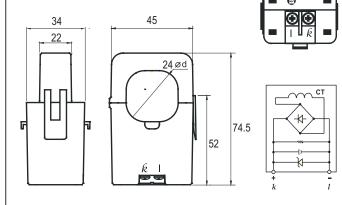
Specifications


Technology		
Output Voltage	0~5V DC (average) / 0 ~ rated current, 7.5V DC limiter built-in	
Maximum Allowable Current	100% (continuous) 150% (1 min.)	
Accuracy/Linearity	± 2% FS.dynamic range 1:100 (50/60 Hz sinewave)	
Output Ripple Voltage	Within 5% of output voltage	
Response Time	300 ms	
Insulation Resistance	DC500V / 100M Ω or more (between core and output terminals)	
Dielectric Strength	AC 2000V / 1 min. (between core and output terminals)	
Mechanical		
Sensing Aperture	10mm (clamp-on type)	
Latch/Unlatch	About 150 times	
Output Terminals	2 x M3-screw with terminal covers	
Tightening Torque	0.3 Nm	
Environmental		
Operating Conditions	-20 ~ +50 °C, ≤85% RH, No condensation, In-house & any direction installable	
Storage Conditions	-30 ~ +90 °C, ≤85% RH, No condensation	

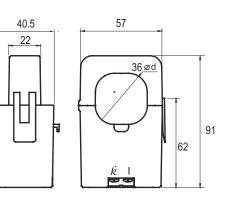
Output Data Voltage

Connecting the Lead Wire

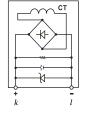



8.

Dimensions — BB-JC10F50-V Unit = mm



Dimensions - BB-JC24S250-V



Dimensions - BB-JC36S500-V

 $\mathsf{Unit} = \mathsf{mm}$

